Show simple item record

dc.contributor.authorClark, Randall D.
dc.contributor.authorPittman, Simon
dc.contributor.authorCaldow, Chris
dc.contributor.authorChristensen, John
dc.contributor.authorRoque, Bryant
dc.contributor.authorAppeldoorn, Richard S.
dc.contributor.authorMonaco, Mark E.
dc.date.accessioned2015-11-21T21:31:48Z
dc.date.available2015-11-21T21:31:48Z
dc.date.issued2009
dc.identifier.issn0008-6452
dc.identifier.urihttp://hdl.handle.net/123456789/2674
dc.description.abstractFew studies have quantified the extent of nocturnal cross-habitat movements for fish, or the influence of habitat adjacencies on nutrient flows and trophodynamics. To investigate the patterns of nocturnal cross-boundary movements of fish and quantify trophic connectivity, fish were sampled at night with gillnets set along the boundaries between dominant habitat types (coral reef/seagrass and mangrove/ seagrass) in southwestern Puerto Rico. Fish movement across adjacent boundary patches were equivalent at both coral reefs and mangroves. Prey biomass transfer was greater from seagrass to coral reefs (0.016 kg/km) and from mangroves to seagrass (0.006 kg/km) but not statistically significant, indicating a balance of flow between adjacent habitats. Pelagic species (jacks, sharks, rays) accounted for 37% of prey biomass transport at coral reef/seagrass and 46% at mangrove/seagrass while grunts and snappers accounted for 7% and 15%, respectively. This study indicated that coral reefs and mangroves serve as a feeding area for a wide range of multi-habitat fish species. Crabs were the most frequent prey item in fish leaving coral reefs while molluscs were observed slightly more frequently than crabs in fish entering coral reefs. For most prey types, biomass exported from mangroves was greater than biomass imported. The information on direction of fish movement together with analysis of prey data provided strong evidence of ecological linkages between distinct adjacent habitat types and highlighted the need for greater inclusion of a mosaic of multiple habitats when attempting to understand ecosystem function including the spatial transfer of energy across the seascape.
dc.description.sponsorshipCollege of Arts and Sciences University of Puerto Rico, Mayagüez
dc.language.isoen
dc.publisherCaribbean Journal of Science, Vol. 45, No. 2-3, 282-303, 2009
dc.subjectconnectivity
dc.subjecthabitat boundaries
dc.subjectcoral reef ecosystems
dc.subjectmangroves
dc.subjectfish prey
dc.subjectnocturnal fish movement
dc.subjectseascape
dc.titleNocturnal fish movement and trophic flow across habitat boundaries in a coral reef ecosystem (SW Puerto Rico)
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record