Show simple item record

dc.contributor.advisorGong, Guihua (Consejero)
dc.contributor.authorWang, Kun
dc.date.accessioned2015-11-21T21:25:36Z
dc.date.available2015-11-21T21:25:36Z
dc.identifier.urihttp://hdl.handle.net/123456789/2311
dc.description.abstractLet A = lim n→∞ (An,ɸn,m) be a C∗ algebra where An =⨁kn i=1 Ain , Ain are splitting interval algebras. Suppose that A has the ideal property: each closed two-sided ideal is generated by the projections inside the ideal, as a closed two-sided ideal. In Chapter 1, we show that the scaled ordered K0 group and the ordered vector spaces AffT(eAe) with maps between AffT(e'Ae') and AffT(eAe) are the complete invariant for the classification of this class of C∗-algebras, where eAe := {eae| a ∈ A}, and e, e' are certain projections in A with e' <e. We call this invariant Stevens’ Invariant. In Chapter 2, we enlarge the Elliott’s invariant by considering the infinite traces. And we show that if A and B have isomorphic Stevens’ Invariant, then they have isomorphic Elliott Invariant and vise versa, where A and B are two C ∗ -algebras with the ideal property. Moreover, for Z-absorbing C∗ -algebra, we give a characterization of Cuntz comparability by lower semi-continuous dimension functions. In Chapter 3, we talk about the C ∗ exponential length. Let X be a compact Hausdorff space. We give an example to show that there is u ∈ C(X) ⊗ Mn with det(u(x)) = 1 for all x ∈ X and u ∼h 1 such that the C∗ exponential length of u (denoted by cel(u)) can not be controlled by π. Moreover, for any ε> 0, we can find a simple inductive limit C ∗ -algebra (simple AH algebra), say A, and a unitary u ∈ CU(A) with u ∼h 1 and cel(u) ≥ 2π − ε.
dc.language.isoen
dc.subjectC*
dc.subjectElliott invariant
dc.subjectsplitting interval algebra
dc.subjectK- theory
dc.titleClassification of Splitting Interval Algebras and the C* Exponential Length
dc.typeDissertation


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record