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ABSTRACT

Multi-Environment Trials (METs) are used to make recommendations
about genotypes at many stages of plant breeding programs. Because of the
genotype-environment interaction, METs are usually conducted in various
environments (locations and/or years), using designs which involve several
repetitions (plots) for each genotype at each environment. The stratification
or blocking of plots within each environment enables one to consider part of
the variability due to differences between plots. The objective of this study
was to see how frequently the problem of heterogeneous variances across
environments appears in Peanut Breeding Program METs, and to evaluate
the effects of diverse spatial modeling strategies on the comparison of gen-
otype means in each environment. A series of 18 METs in a peanut breeding
program with randomized complete block design in each environment were
simultaneously adjusted by using 1) classic analysis of variance models
(fixed and random block effects); 2) mixed models adjusted with homoge-
nous and heterogeneous residual variances to take into account that experi-
ments conducted in different environments may vary in precision (residual
variances). The results suggest that the analysis of variance models with a
block design and heteroscedastic errors between locations are more appro-
priate than their homogeneous residual variance versions.

Key words: block design, heterogeneous variances, variety trials

RESUMEN

Modelos para ensayos varietales multiambientales con efectos de bloques 
fijos y aleatorios y varianzas residuales homogéneas y heterogéneas

Los ensayos multiambientales (EMA) se usan para recomendar genoti-
pos en distintas etapas de los programas de mejoramiento. Debido a la pre-
sencia de interacción genotipo-ambiente, los EMA se conducen
generalmente en diferentes ambientes (localidades y/o años) usando dise-
ños que incluyen varias repeticiones (parcelas) de cada genotipo en cada
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ambiente. La estratificación o bloqueo de parcelas en cada ambiente per-
mite tener en cuenta la parte de la variabilidad que se debe a las diferencias
entre las parcelas. El objetivo de este estudio fue estudiar cuán frecuente se
presenta la heterogeneidad de varianzas residuales en el Programa de Mejo-
ramiento de Maní–INTA, y evaluar los efectos de diferentes estrategias de
modelamiento sobre la comparación de genotipos en cada ambiente. Se usó
una serie de 18 EMA de un programa de fitomejoramiento de maní. Los EMA
estaban arreglados de acuerdo a un diseño de bloques completos aleatori-
zados, y se ajustaron los siguientes modelos: 1) análisis de varianza clási-
cos (bloques fijos y aleatorios); 2) modelos mixtos ajustados con varianzas
residuales homogéneas y heterogéneas para tener en cuenta que los experi-
mentos conducidos en ambientes diferentes podrían tener distinta precisión
(varianza residual). Los resultados sugieren que los modelos de análisis de
varianza con diseño en bloque y errores heteroscedásticos por localidad
son más apropiados que los modelos con varianza residual homogénea.

Palabras clave: diseño en bloques, varianzas heterogéneas, ensayos varietales

 

INTRODUCTION

 

The estimation and comparison of genotype effects on multi-envi-
ronment trials (METs) carried out at various locations require efficient
mean yield (and other traits) estimations for each genotype. Commonly,
METs are conducted under experimental designs with repetitions (var-
ious plots) for each genotype in each environment. The stratification or
blocking of plots is a technique used to reduce the variation effects be-
tween experimental units. The blocks are groups of experimental units
formed in such a way that the plots within the blocks are as homoge-
neous as possible. Designs with plot stratification such as the
randomized complete block (RCB) design, incomplete block designs,
and lattices are used in each environment in most METs. These designs
are more efficient than the completely randomized design when the dif-
ferences between experimental units in the same stratum are minimal
and the differences between strata are maximal (Gusmao, 1986). Di-
versions from this condition may result in imprecise estimations for the
genotype effects and/or overestimation of the error variance (Stroup et
al., 1994). Generally METs include various genotypes, which explains
why the block size necessary for repetitions in the trial is large, and it
is difficult to assure homogeneity for the plots in the block. The nearest
plots may be more similar than the distant ones, thus generating spa-
tial variability. Spatial variability refers to the variation between
observations in plots having spatial arrangements on the ground (Mer-
cer and Hall, 1911). Variation from plot to plot within the same block
may be due to competition between genotypes (Kempton and Lockwod,
1984), heterogeneity in soil fertility (Pearce, 1980), insect dispersion,
weeds, crop disease or cultural aspects (Smith et al., 2001). Statistical
procedures which consider the spatial variation between plots have
been proposed. These procedures are varied and range from adjusting
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genotype means with observations in neighboring plots (Papadakis,
1937; Wilkinson et al., 1983; Besag and Kempton, 1986) to the use of
models which include spatial correlations in random terms and which
also adjust genotype means (Mead, 1971; Besag, 1974, 1977; Ripley,
1981). Stroup et al. (1994) compared methods and reached conclusions
about the benefits associated with the modeling of spatial variation in
wheat METs in the central region of the USA, using only one-location
trials. For METs conducted in a location, Gleeson and Cullis (1987),
Cullis et al. (1996) and Cullis and Gleeson (1991) conceptualize error
variation as a whole, and they model it through its covariance struc-
ture, all of which obtains more precise estimations for the cultivar
means than those derived from the plot stratification. Gilmour et al.
(1997) partitioned the spatial variability between plots in a trial in lo-
cal, global, and extraneous spatial variability. The local spatial
variability refers to the differences between plots on a small scale,
where intra-block variations are considered.

Modeling the spatial structure of the plots as distance functions can
be done in the context of mixed linear models (Zimmerman and Har-
ville, 1991; Gilmour et al., 1997; Cullis et al., 1998, Casanoves et al.,
2005b), where it is not only possible to consider the correlation struc-
ture among yield data obtained from different plots but also to model
residual variance heterogeneity among the trials conducted in different
environments. Although the spatial modeling through geo-statistical
models could potentially yield more power under certain circumstances
(Casanoves et al., 2005b), more traditional approaches, such as the ex-
plicit use of block effects in the model, are simpler to interpret and may
be more appealing to practitioners.

Another problem not normally addressed in classical analyses is the
fact that in different environments the residual variability could be dif-
ferent. If this difference is not considered in modeling METs, standard
errors could be underestimated for certain comparisons and overesti-
mated for others.

The objective of this study was to see how frequent the problem of
heterogeneous variances across environments appears in Peanut
Breeding Program METs, and evaluate the effect of diverse spatial
modeling strategies on the comparison of genotype means by location
since in the presence of genotype 

 

×

 

 location interaction, environment
specific inference is more informative. The following models were si-
multaneously adjusted for 18 METs from a plant breeding program
with a RCB design in each environment: 1) classic analysis of variance
model with fixed block effects (FB); 2) classic analysis of variance model
with random block effects (RB); 3) classic analysis of variance model
with fixed block effects adjusted with heterogeneous residual variances
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by location (FBH); 4) classic analysis of variance model with random
block effects adjusted with heterogeneous residual variances by loca-
tion (RBH); 5) a nearest-neighbor method as reference (PAP;
Papadakis, 1937). Heterogeneous residual variances by location allow
the consideration of possible differences in precision of MET conducted
in different environments. The adjustments of genotype means and the
statistical comparison among genotypes within each trial were used to
compare the behavior of the different models.

 

MATERIALS AND METHODS

 

Database

 

Data used came from nine years (1984/85 to 1992/93) of METs con-
ducted for two types of experimental peanut (

 

Arachis hypogaea

 

 L.) geno-
types in the Peanut Breeding Program at Manfredi, Instituto Nacional de
Tecnología Agropecuaria (PBP-INTA), Argentina. METs for Type 1 geno-
types correspond to trials involving short-cycle genotypes; METs for Type
2 genotypes, to trials where long-cycle genotypes were compared. A total of
18 METs were used in this study. These involved genotypes representing
the diversity of the germplasm evaluated in early stages of the PBP-INTA.
In each year, the METs were conducted at three locations in the agricul-
tural area of the Province of Córdoba (Argentina): Manfredi (Lat. S 31°41’,
Long. W 63°26’); General Cabrera (Lat. S 32°49’, Long. W 63°51’); and Río
Tercero (Lat. S 32°10’, Long. W 64°7’), with the exception of the 1991/92
and 1992/93 years, when Río Tercero did not participate. The climate and
soil characteristics of the three locations are similar (Casanoves et al.,
2005a), and the main difference among these locations was in rainfall. At
each location, we evaluated an average of 15 genotypes per year in the
short-cycle trials (min = 11 and max = 17 genotypes) and 14 genotypes per
year in the long-cycle trials (min = 13 and max = 17 genotypes). The group
of genotypes which was evaluated each year was the same for each loca-
tion. At each of the three locations, both short-cycle and long-cycle geno-
types trials were conducted following a RCB design with four repetitions.
The plots consisted of two 10-meter-long furrows 70 centimeters apart.
Recommended seeding rates (15 seeds/m

 

2

 

) and cultural practices were
used in all of the METs. Each plot was harvested manually after eliminat-
ing the border areas. The analyzed yield values were reported as kilo-
grams of peanuts per plot on a standard moisture content basis (80 g/kg).

 

Analysis Procedures

 

The grain yield data obtained each year for each MET were ana-
lyzed by using the procedures detailed below. The first two methods
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were based on analysis of variance for a randomized complete block de-
sign using the following model:

where y

 

ijk

 

 is the yield of genotype i, in location j, block k; µ is the overall
mean; L

 

j

 

 is the effect of location 

 

j

 

 with 

 

j

 

 = 1, . . . ,s; B(L)

 

k

 

(

 

j

 

) 

 

is the effect
of block 

 

k

 

 within location 

 

j

 

 with 
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= 1, . . . ,n; G
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is the effect of genotype

 

i

 

 with 
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= 1, . . . ,g; GL
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 is the effect of the interaction of genotype 

 

i

 

 with
location 

 

j

 

, and 

 

ε

 

ijk

 

 is the error term associated with observation y

 

ijk

 

. Ex-
cept for 

 

ε

 

ijk

 

 and the block effects, all of the model factors were
considered as fixed effects with the objective of restricting the compar-
ison of modeling procedures to the plot structure and comparing the
approximations obtained under mixed models with those of other anal-
ysis techniques used to control spatial variability. The block effects
were considered fixed in model 1 (FB) and random in the second model
(RB). The 

 

ε

 

ijk

 

 were assumed to be independent with constant variance

 

σ

 

2

 

 in these first two models, i.e., supposedly local spatial variation does
not exist, but homogeneous residual variance does exist between loca-
tions. Two other procedures denoted as the FBH model and the RBH
model were also based on equation [1] but considered the possibility
that heterogeneous residual variance might be heterogeneous across
locations. All models were adjusted by using Proc Mixed SAS Version
8.2 (SAS Institute, 2001) (Table 1). 

Grain yield means were also adjusted with the original procedure
known as the nearest-neighbor adjustment of Papadakis (1937), which
uses the residues of adjacent plots to correct the genotype means for
spatial variability. In order to implement the nearest-neighbor adjust-
ment, we used the following steps, detailed in Stroup et al. (1994): 1)
obtain the adjacent plot residues for a model without block effects, that
is 

 

ε

 

km

 

 =

 

y

 

km

 

 -

 

–y

 

km

 

, where 

 

e

 

km

 

 is the residue in latitude 

 

k

 

th and longitude

 

m

 

th, 

 

y

 

km

 

 and

 

–y

 

km

 

 are the observed value and the mean value of geno-
type in plot 

 

km

 

; 2) calculate the adjustment covariate in the east-west
(EW) direction (right to left on the field map, independent of the real
orientation) from the residues obtained in step one such as EO

 

km

 

 =

 

½

 

(

 

e

 

k,m-1

 

 + 

 

e

 

k, m+1

 

); when the plot is the border of the block, the covariate
is calculated with only the residue from the adjacent plot; 3) calculate
the adjustment covariate in the north-south (NS) direction (from the
top to the bottom of the field map, independently of the real orienta-
tion) similar to the calculation in step two, i.e., NS

 

km 

 

= 

 

½

 

(

 

e

 

k-1, m

 

+ 

 

e

 

k+1, m

 

);
and 4) fit all three analysis of covariance models, one using the EW co-
variates, another the NS covariate and the third using both covariates
(EW-NS). The best fit was selected from these three models to carry out

yijk µ Lj B L( )k j( ) Gi GL ij( ) εijk+ + + + += [1]
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the iterative procedure proposed by Wilkinson et al. (1983), where the
first iteration is the original procedure from Papadakis (1937) and in
the rest, the plot residues are calculated by using the genotype means
adjusted in the previous iteration. The procedure was repeated until
the differences between the genotype means in two successive itera-
tions were negligible. In this study, iterations were stopped when the
estimation from one step was not different from that of the previous
step by two decimal places (original precision of the data). This proce-
dure was denoted as the PAP Model.

The models associated with each procedure were evaluated with
Akaike’s (AIC) and Schwarz’s (BIC) criteria (SAS Institute, 2001), cal-
culated as follows:

AIC = -2L + 2d
BIC = -2L + dln n

where L is the restricted maximum likelihood value, d = q + p is the
model dimension, q is the number of estimated covariance parameters,
and p is the rank of the design matrix X. The maximum likelihood esti-
mation method was used. The best model is that with the lowest value of
the AIC or BIC. Variance component estimates were calculated with the
restricted maximum likelihood method (REML), and tests were carried
out with the degrees of freedom adjustment proposed by Kenward and
Roger (1997). As an indicator of the power of each procedure, the F sta-
tistic value was used to test the hypothesis of no genotype effects at each
location of the METs. Pearson’s correlation coefficients between the ad-
justed least square means for each genotype in each of the METs were
calculated. The estimators for the covariance parameters associated with
each model were also obtained to facilitate the comparison of procedures.

TABLE 1.—Summarized syntax for the Proc Mixed SAS (Version 8.2) commands to fit the
four models for MET.

Model1 Syntax

FB class block genotype location; model yield = genotype location 
genotype*location block (location);

RB class block genotype location; model yield = genotype location
genotype*location; random block (location);

FBH class block genotype location; model yield = genotype location
genotype*location block (location); repeated/group = location;

RBH class block genotype location; model yield = genotype location
genotype*location; random block (location); repeated/group = location;

1FB, fixed block effects; RB, random block effects; FBH, fixed block effects with hetero-
geneous residual variances; RBH, random block effects with heterogeneous residual vari-
ances.
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RESULTS AND DISCUSSION

In all of the MET evaluated, the genotype × location interaction was
significant (p < 0.0001). In the PBP-INTA, the genotype × environment
interaction within the same agricultural year was, in general, random
by nature (Casanoves et al., 2005a). However, the genotypes were com-
pared within each location not only because of this interaction but also
because plot spatial correlation models may differ among locations.

When the block effect within the location was considered, it was al-
ways significant (p < 0.05). Tables 2 and 3 present the AIC and BIC
values associated with each model. According to BIC, the RB model
was superior to the FB model in all cases. However, the AIC values
suggested the opposite. This occurs because the plot correlation struc-
ture is modeled with one additional parameter in the RCB design
with random block effects, whereas the model with fixed block effects
uses nine parameters for the same objective. BIC penalizes over-pa-
rameterization more than AIC. The inference space is larger for the
models with random block effects than for models with fixed block ef-

TABLE 2.—Akaike (AIC) criterion values obtained from fitting five models which
incorporate spatial correlations for 18 METs.

Cycle2

Models1

Year FB RB FBH RBH PAP

1 1984/85 26.6 38.6 20.4 32.7 223.4
1 1985/86 60.1 75.1 61.9 77.4 154.1
1 1986/87 69.4 84.8 68.8 83.7 60.9
1 1987/88 51.6 68.4 42.1 59.8 282.6
1 1988/89 53.7 67.7 22.1 37.6 259.0
1 1989/90 185.4 200.6 189.0 204.2 162.4
1 1990/91 73.5 79.3 73.6 79.9 164.1
1 1991/92 22.1 29.0 18.2 26.1 104.0
1 1992/93 18.7 23.1 17.9 22.8 219.3
2 1984/85 120.1 150.8 103.9 135.8 339.7
2 1985/86 184.6 185.3 141.5 140.7 437.0
2 1986/87 178.2 197.4 131.9 153.9 187.4
2 1987/88 67.6 76.2 68.1 76.5 262.5
2 1988/89 83.3 91.4 67.1 77.8 221.2
2 1989/90 116.1 121.8 107.7 114.3 295.4
2 1990/91 135.4 138.5 125.4 129.4 284.1
2 1991/92 41.0 54.5 34.5 48.2 189.6
2 1992/93 79.4 89.7 81.4 91.7 181.6

1FB, fixed block effects; RB, random block effects; FBH, fixed block effects with heter-
ogeneous residual variances; RBH, random block effects with heterogeneous residual vari-
ances; PAP, Papadakis method.

2Short cycle genotypes, 1; long cycle genotypes, 2.
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fects, since it is not restricted to the group of plots actually used in the
experiment. Other measures, such as mean differences and their
standard error are the same in balanced design with random or fixed
block effects. The traditional methods based on blocking plots, even
when the block effects are treated as fixed or random, can be concep-
tualized as special spatial modeling cases that produce valid genotype
mean estimations when the blocking assumptions are consistent with
this variation. Since the block effects are totally or partially balanced
with respect to the genotype effects, the genotype mean adjustments
by spatial correlation, when blocking is considered, will be smaller
than the adjustments corresponding to situations where blocking is
not considered. By fitting models with blocks and heterogeneous re-
sidual variance between environments, both the AIC and BIC values
were reduced in the majority of the METs (Tables 2 and 3). In 11 of
the 18 METs (62%), the difference between the residual variances
was important with a ratio between the highest and the lowest resid-
ual variances greater than two (Tables 4 and 5). The differences in

TABLE 3.—Schwarz (BIC) criterion values obtained from fitting five models which
incorporate spatial correlations for 18 METs.

Cycle2 Year

Models1

FB RB FBH RBH PAP

1 1984/85 202.2 61.4 202.4 56.5 373.4
1 1985/86 196.7 93.5 204.5 96.8 267.0
1 1986/87 258.3 109.0 264.2 108.9 227.0
1 1987/88 254.0 94.1 251.1 86.4 458.5
1 1988/89 242.7 92.0 217.6 62.8 425.1
1 1989/90 374.4 224.8 384.5 229.4 328.5
1 1990/91 249.1 102.1 255.6 103.7 317.4
1 1991/92 93.9 30.9 92.5 28.1 163.5
1 1992/93 121.8 25.7 123.9 25.4 311.3
2 1984/85 269.5 170.6 259.4 156.7 449.5
2 1985/86 347.0 206.6 310.2 163.0 568.2
2 1986/87 367.2 221.6 327.4 179.1 340.5
2 1987/88 243.2 99.0 250.1 100.3 296.7
2 1988/89 285.7 117.1 276.1 104.4 400.3
2 1989/90 291.7 144.6 289.7 138.0 448.7
2 1990/91 284.8 158.4 281.0 150.2 376.2
2 1991/92 128.2 56.7 124.4 50.5 263.6
2 1992/93 166.7 92.0 171.3 94.0 255.6

1FB, fixed block effects; RB, random block effects; FBH, fixed block effects with heter-
ogeneous residual variances; RBH, random block effects with heterogeneous residual vari-
ances; PAP, Papadakis method.

2Short cycle genotypes, 1; long cycle genotypes, 2.
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percentages between the highest and the lowest residual variance for
location vary between 36% (Table 4, 1989/90 year) and 623% (Table 5,
1986/87 year). The FB model, traditionally used for PBP-INTA MET
analysis, was not the best model for fitting the data in any of the 18
MET. The largest differences were observed in the METs with long-

TABLE 4.—Variance component estimates for five models incorporating spatial
correlation for METs involving short-cycle genotypes at the Peanut Breeding
Program – Instituto Nacional de Tecnología Agropecuaria.

Year

Models1

FB RB FBH RBH PAP

1984/85 σ2 = 0.052 σ2
Β  = 0.009 σ2

GC  = 0.056 σ2
Β  = 0.008 σ2

GC = 0.058 σ2 = 0.120

σ2 = 0.052 σ2
Μ  = 0.030 σ2

Μ  = 0.030 σ2
R  = 0.069

σ2
R  = 0.070

1985/86 σ2 = 0.062 σ2
Β  = 0.021 σ2

GC  = 0.058 σ2
Β  = 0.022 σ2

GC  = 0.059 σ2 = 0.101
σ2 = 0.068 σ2

Μ  = 0.061 σ2
Μ  = 0.060 σ2

R  = 0.083
σ2

R  = 0.085

1986/87 σ2 = 0.065 σ2
Β  = 0.016 σ2

GC  = 0.052  σ2
Β  = 0.013 σ2

GC  = 0.052 σ2 = 0.047
σ2 = 0.065 σ2

Μ  = 0.086 σ2
Μ  = 0.089 σ2

R  = 0.056
σ2

R  = 0.057

1987/88 σ2 = 0.059 σ2
Β  = 0.015 σ2

GC  = 0.058  σ2
Β  = 0.015 σ2

GC  = 0.059 σ2 = 0.139
σ2 = 0.058 σ2

Μ  = 0.083 σ2
Μ  = 0.082 σ2

R  = 0.033
σ2

R  = 0.033

1988/89 σ2 = 0.060 σ2
Β  = 0.012 σ2

GC  = 0.077 σ2
Β  = 0.010 σ2

GC  = 0.079 σ2 = 0.133
σ2 = 0.060 σ2

Μ  = 0.083 σ2
Μ  = 0.083 σ2

R  = 0.019
σ2

R  = 0.019

1989/90 σ2 = 0.119 σ2
Β  = 0.028 σ2

GC = 0.129 σ2
Β  = 0.028 σ2

GC  = 0.130 σ2 = 0.080
σ2 = 0.119 σ2

Μ  = 0.110 σ2
Μ  = 0.110 σ2

R  = 0.118
σ2

R  = 0.119

1990/91 σ2 = 0.068 σ2
Β  = 0.005 σ2

GC  = 0.088  σ2
Β  = 0.005 σ2

GC  = 0.086 σ2 = 0.085
σ2 = 0.068 σ2

Μ  = 0.063 σ2
Μ  = 0.063 σ2

R  = 0.054
σ2

R  = 0.053

1991/92 σ2 = 0.057 σ2
Β  = 0.009 σ2

GC  = 0.036 σ2
Β  = 0.011 σ2

GC  = 0.037 σ2 = 0.111
σ2 = 0.057 σ2

Μ  = 0.077 σ2
Μ  = 0.076

1992/93 σ2 = 0.053 σ2
Β  = 0.004 σ2

GC  = 0.064 σ2
Β  = 0.005 σ2

GC  = 0.063 σ2 = 0.210
σ2 = 0.053 σ2

Μ  = 0.042 σ2
Μ  = 0.042

1FB, fixed block effects; RB, random block effects; FBH, fixed block effects with hetero-
geneous residual variances; RBH, random block effects with heterogeneous residual vari-
ances; PAP, Papadakis method; σ2

Β , block variance; σ2
Μ , residual variance for Manfredi

location; σ2
GC , residual variance for General Cabrera location; σ2

R , residual variance for Río
Tercero location
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cycle experimental genotypes. These genotypes remained on the
ground longer; thus the trials could have greater experimental error
and differences between locations because of the impact of climatic
factors during a longer period. With the exception of the years 1987/
88 and 1992/93, in all of the METs for long-cycle genotypes, both fit-
ting criteria suggested that the models for a heteroscedastic block
design are more appropriate than their homogeneous residual vari-

TABLE 5.—Variance component estimates for five models incorporating spatial
correlation for METs involving long-cycle genotypes at the Peanut Breeding
Program – Instituto Nacional de Tecnología Agropecuaria.

Year

Models1

FB RB FBH RBH PAP

1984/85 σ2 = 0.106 σ2
Β  = 0.121 σ2

GC  = 0.063 σ2
Β  = 0.116 σ2

GC  = 0.063 σ2 = 0.326
σ2 = 0.106 σ2

Μ  = 0.158 σ2
Μ  = 0.160 σ2

R  = 0.096
σ2

R  = 0.097

1985/86 σ2 = 0.137 σ2
Β  = 0.004 σ2

GC  = 0.287 σ2
Β  = 0.001 σ2

GC  = 0.297 σ2 = 0.479
σ2 = 0.137 σ2

Μ  = 0.050 σ2
Μ  = 0.050 σ2

R  = 0.073
σ2

R  = 0.073

1986/87 σ2 = 0.114 σ2
Β  = 0.041 σ2

GC  = 0.212 σ2
Β  = 0.039 σ2

GC  = 0.212 σ2 = 0.095
σ2 = 0.114 σ2

Μ  = 0.094 σ2
Μ  = 0.095 σ2

R  = 0.035
σ2

R  = 0.034

1987/88 σ2 = 0.066 σ2
Β  = 0.008 σ2

GC  = 0.085 σ2
Β  = 0.007 σ2

GC  = 0.087 σ2 = 0.149
σ2 = 0.066 σ2

Μ  = 0.056 σ2
Μ  = 0.055 σ2

R  = 0.057
σ2

R  = 0.057

1988/89 σ2 = 0.068 σ2
Β  = 0.007 σ2

GC  = 0.107 σ2
Β  = 0.009 σ2

GC  = 0.105 σ2 = 0.102
σ2 = 0.068 σ2

Μ  = 0.035 σ2
Μ  = 0.036 σ2

R  = 0.062
σ2

R  = 0.062

1989/90 σ2 = 0.086 σ2
Β  = 0.007 σ2

GC  = 0.049 σ2
Β  = 0.007 σ2

GC  = 0.049 σ2 = 0.177
σ2 = 0.086 σ2

Μ  = 0.088 σ2
Μ  = 0.085 σ2

R  = 0.124
σ2

R  = 0.123

1990/91 σ2 = 0.107 σ2
Β  = 0.006 σ2

GC  = 0.112 σ2
Β  = 0.006 σ2

GC  = 0.117 σ2 = 0.167
σ2 = 0.107 σ2

Μ  = 0.150 σ2
Μ  = 0.152 σ2

R  = 0.053
σ2

R  = 0.053

1991/92 σ2 = 0.066 σ2
Β  = 0.029 σ2

GC  = 0.041 σ2
Β  = 0.025 σ2

GC  = 0.040 σ2 = 0.212
σ2 = 0.066 σ2

Μ  = 0.092 σ2
Μ  = 0.094

1992/93 σ2 = 0.096 σ2
Β  = 0.025 σ2

GC  = 0.099 σ2
Β  = 0.026 σ2

GC  = 0.098 σ2 = 0.196
σ2 = 0.096 σ2

Μ  = 0.093 σ2
Μ  = 0.094

1FB, fixed block effects; RB, random block effects; FBH, fixed block effects with hetero-
geneous residual variances; RBH, random block effects with heterogeneous residual vari-
ances; PAP, Papadakis method; σ2

Β , block variance; σ2
Μ , residual variance for Manfredi

location; σ2
GC , residual variance for General Cabrera location; σ2

R , residual variance for Río
Tercero location.
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ance versions (Tables 2 and 3). The two years where the FBH and
RBH models were not superior to the FB and RB, respectively, were
the only years where the differences in residual variances between lo-
cations were negligible (Tables 6 and 7). For these two years, the
differences between the F statistic for the hypothesis test of no geno-
type effect obtained within each location were very similar for the
homogeneous and heterogeneous block design models. However, in
the majority of the METs for long-cycle genotypes, important F statis-

TABLE 6.—F statistics for the mean comparison by location for four models incorporating
spatial correlation between plots for Peanut Breeding Program—Instituto
Nacional de Tecnología Agropecuaria METs for short-cycle genotypes.

Year Location

Models1

FB RB FBH RBH Best model2

1984/85 General Cabrera 11.71 11.71 10.86 10.57 RBH
Manfredi 8.87 8.87 15.15 15.30
Río Tercero 5.12 5.12 3.83 3.87

1985/86 General Cabrera 11.21 11.21 13.22 12.89 RB
Manfredi 6.28 6.28 6.96 7.06
Río Tercero 4.94 4.94 3.95 4.02

1986/87 General Cabrera 17.77 17.77 22.01 22.24 RBH
Manfredi 5.91 5.91 4.48 4.32
Río Tercero 3.00 3.00 3.43 3.47

1987/88 General Cabrera 13.15 13.15 13.14 12.93 RBH
Manfredi 4.97 4.97 13.49 3.53
Río Tercero 10.09 10.09 17.53 17.59

1988/89 General Cabrera 1.99 1.99 1.55 1.50 RBH
Manfredi 14.78 14.78 10.62 10.72
Río Tercero 4.76 4.76 14.90 14.97

1989/90 General Cabrera 5.38 5.38 4.98 4.95 RB
Manfredi 5.63 5.63 6.09 6.08
Río Tercero 3.65 3.65 3.67 3.70

1990/91 General Cabrera 2.34 2.34 1.82 1.84 RB
Manfredi 3.04 3.04 3.27 3.30
Río Tercero 5.02 5.02 6.42 6.33

1991/92 General Cabrera 7.85 7.85 12.16 12.04 RBH
Manfredi 8.12 8.12 6.00 6.13

1992/93 General Cabrera 13.27 13.27 10.95 11.10 RBH
Manfredi 20.81 20.81 26.40 26.18

1FB, fixed block effects; RB, random block effects; FBH, fixed block effects with heteroge-
neous residual variances; RBH, random block effects with heterogeneous residual vari-
ances.

2According to BIC criterion (SAS Institute, 2001).
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tic changes were found in at least one of the three locations involved
for each of the MET (Table 7). Considering both the METs for long-
and short-cycle genotypes, the FBH model was more appropriate than
the FB model in 78% of the METs analyzed. Something similar oc-
curred when models RB and RBH were compared. According to AIC,
the model with heterogeneous residual variance was better in 82% of
the cases, whereas according to BIC the second model was superior in
72% of the cases. It is important to note that even though BIC penal-

TABLE 7.—F statistics for the mean comparison by location for four models incorporating
spatial correlation between plots for Peanut Breeding Program–Instituto
Nacional de Tecnología Agropecuaria METs for long-cycle genotypes.

Year Location

Models of analysis1

FB RB FBH RBH Best model2

1984/85 General Cabrera 12.64 12.64 21.21 21.25 RBH
Manfredi 18.40 18.40 12.32 12.20
Río Tercero 4.34 4.34 4.76 4.77

1985/86 General Cabrera 37.37 37.37 17.84 17.22 RBH
Manfredi 7.08 7.08 19.32 19.23
Río Tercero 2.20 2.20 4.08 4.15

1986/87 General Cabrera 9.88 9.88 5.30 5.30 RBH
Manfredi 15.79 15.79 19.06 18.90
Río Tercero 4.79 4.79 15.59 15.63

1987/88 General Cabrera 9.21 9.21 7.13 6.69 RB
Manfredi 9.60 9.60 11.33 11.40
Río Tercero 9.98 9.98 11.58 11.65

1988/89 General Cabrera 5.69 5.69 3.63 3.71 RBH
Manfredi 7.23 7.23 13.94 13.74
Río Tercero 3.57 3.57 3.91 3.95

1989/90 General Cabrera 4.22 4.22 7.49 7.40 RBH
Manfredi 11.85 11.85 11.67 12.00
Río Tercero 8.67 8.67 6.10 6.03

1990/91 General Cabrera 3.21 3.21 2.88 2.96 RBH
Manfredi 5.66 5.66 4.06 3.99
Río Tercero 6.90 6.90 14.02 13.93

1991/92 General Cabrera 14.79 14.79 24.15 24.35 RBH
Manfredi 11.90 11.90 8.57 8.41

1992/93 General Cabrera 9.95 9.95 9.60 9.75 RB
Manfredi 3.96 3.96 4.11 4.05

1FB, fixed block effects; RB, random block effects; FBH, fixed block effects with heteroge-
neous residual variances; RBH, random block effects with heterogeneous residual vari-
ances.

2According to BIC criterion (SAS Institute, 2001). 
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izes for estimating a large number of parameters, the models with
heterogeneous residual variance are recommended for MET.

When a nearest neighbor adjustment method was used (Stroup et al.,
1994), the adjustments directly affected the mean estimates, since this
analysis is based on covariables. Table 8 lists the significance of the ad-
justment covariates by EW, NS and EW-NS for the same MET where the
analysis of covariance with different strategies for spatial correlation
modeling was used. In 40% of the METs, the lack of covariate signifi-
cance in the three covariance models suggested that adjustment for
spatial correlation was not needed; that is to say, NS, EW, or both were
non significant (Table 8). For the rest of the MET, the model with the EW
covariate was generally best; i.e., it removed the intra-block spatial cor-
relation variable. In two years, 1986/87 and 1989/90, for the MET with
short-cycle genotypes, the best model was that which considered both
the EW and the NS as covariates. For these two years AIC and BIC (ob-
tained by the PAP model according to the best covariance model) suggest
that the PAP model fits better than the classic analysis of variance mod-

TABLE 8.—Covariate significances to fit spatial correlation using the Papadakis method
for three covariate models: with EW as a covariate, with NS as a covariate
and with both covariates.

MET2

Direction1

Best modelYear EW NS

EW-NS

EW NS

1 1984/85 0.0368 0.3471 0.0084 0.0617 EW
1 1985/86 <0.0001 0.9601 <0.0001 0.4089 EW
1 1986/87 <0.0001 0.0939 <0.0001 0.0103 EW-NS
1 1987/88 0.0047 0.8188 0.0020 0.2015 EW
1 1988/89 0.1085 0.5408 0.1391 0.9753 None
1 1989/90 <0.0001 <0.0001 <0.0001 0.0033 EW-NS
1 1990/91 0.4905 0.7487 0.4995 0.7693 None
1 1991/92 0.0803 0.0367 0.1508 0.0672 NS
1 1992/93 0.5576 0.8674 0.5521 0.8393 None
2 1984/85 0.0002 0.0485 0.0001 0.0300 EW-NS
2 1985/86 0.7984 0.6078 0.7636 0.5921 None
2 1986/87 <0.0001 0.8746 <0.0001 0.8251 EW
2 1987/88 0.0006 0.8542 0.0005 0.5528 EW
2 1988/89 0.1209 0.9580 0.1099 0.6809 None
2 1989/90 0.2446 0.1857 0.1342 0.1044 None
2 1990/91 0.2683 0.0980 0.1933 0.0740 None
2 1991/92 0.0020 0.2136 0.0042 0.6233 EW
2 1992/93 0.0416 0.2454 0.2829 0.2863 EW

1EW, east-west direction; NS, north-south direction.
2Short cycle genotypes, 1; long cycle genotypes, 2.



130 CASANOVES ET AL./MODELS FOR MULTI-ENVIRONMENT TRIALS

els (with either fixed or random block effects). Also in this case the
correlation between the means adjusted for nearest neighbors and for
mixed spatial showed a highly significant value (r = 0.99, P < 0.0001).
However, in the majority of the METs, the analysis of variance models
were superior to the nearest neighbor method. There are possible non-
linear spatial correlations between plots. The results suggest that the
use of procedures adjusted for nearest neighbors such as the type pro-
posed by Papadakis (1937) is limited, since on the one hand the residues
from the neighboring plots do not always have a linear relationship with
the yield in the study plot (a necessary assumption for the analysis of co-
variance); on the other hand, the resulting model is non-linear because
it incorporates a product of two parameters to be estimated. Therefore,
iterative processes are required in order to make combined estimations
for these parameters. Furthermore, if the trial is conducted in blocks
even under the covariance model, the implemented randomization pro-
cess, which incorporates block effects, should be considered.

CONCLUSIONS

The model with fixed block effects, which is traditionally used for
PMM-INTA MET analysis, was not the best model to fit the data in any
of the 18 METs. The greatest differences were observed in the MET
with long-cycle experimental genotypes.

The analysis of variance models with a block design and heteroscedas-
tic errors between locations are more appropriate than their homoge-
neous residual variance versions. In balanced designs, the standard error
for the mean differences is the same for models with fixed block effects as
for models with random block effects; therefore, both models achieve the
same mean differences. However, with the random block effects models
the inference space for comparing genotype effects is larger since it is not
restricted to the combined plots used in the experiment. Modeling of the
local spatial tendencies using an analysis of variance including heteroge-
neous residual variances increased the ability to identify differences
among genotypes. These results are likely to be similar in other crops, es-
pecially in METs with very diverse environments.
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